Local similarity between the Mandelbrot set and Julia sets. Wolf Jung, Gesamtschule Aachen-Brand, Aachen, Germany.

$$f_c(z) = z^2 + c$$
,  $\mathcal{K}_c = \{ z \mid f_c^n(z) \not\to \infty \}$ ,  $\mathcal{M} = \{ c \mid c \in \mathcal{K}_c \}$ .

An example of local similarity was given by Peitgen 1988: after an affine rescaling, the decorations of a little Mandelbrot set and a little Julia set "look the same".

### Intuition of local similarity

Formulation of local similarity

Renormalization: basic ideas

Renormalization with a large annulus

Asymptotic models

Hairiness

Example 1, 2, 3, 4, 5, 6, 7.

The images were made with Mandel, a program available from www.mndynamics.com.

Intuition of local similarity

Observations:  $\mathcal{M}$  and  $\mathcal{K}_c$  are looking similar (small Hausdorff distance). This similarity is lost both very near and very far away. The similarity is between the decorations.

1st idea:

parameter c is in decoration of little  $\mathcal{M}$  $\Leftrightarrow$  crit. value c is in decoration of little  $\mathcal{K}$ . Aim: control the changes of the dynamic decorations. Mostly bending, because preimages of little  $\mathcal{K}$  are very small.

2nd idea: Control is needed only in a large fundamental annulus, then pull it back. Boettcher  $\Phi$  makes this explicit, gives the bending. Main



Formulation of local similarity

Start with affine conjugation from  $f_c^m(z)$  to  $\tilde{z}^2 + \tilde{c} + \varepsilon$  on large disk. Then a quasi-conformal conjugation, close to the identity, gives  $\hat{z}^2 + \hat{c}$ . For  $\hat{c}$  in little  $\mathcal{M}$ :

1) On a large disk, the decorations satisfy  $\Phi_M(\hat{\mathcal{M}}) \approx \Phi_{\hat{c}}(\hat{\mathcal{K}}_{\hat{c}})$ . 2)  $\tilde{\mathcal{M}} + \frac{1}{2} \approx \tilde{\mathcal{K}}_{\tilde{c}}$  for  $|\tilde{c}| > 10$ . 3)  $\mathcal{M} - c' \approx \lambda(\mathcal{K}_c - c)$ .

**Theorem 0** for the centers  $c_n$  at a Misiurewicz point a,  $c_n \sim a + K\rho_a^{-n}$ : the relative distance in 1) goes to 0 on a radius  $\mathcal{O}(\rho_a^{n/4})$  as  $n \to \infty$ . Main



#### Renormalization: basic ideas



Quadratic-like mapping: smaller disk is mapped 2:1 to larger disk.

Little Julia set: not escaping — other points escaping through the annulus. Either escaping to  $\infty$ , if not in  $\mathcal{K}_c$ . Or in decoration: mapped to a distant part of  $\mathcal{K}_c$ , maybe returning later. Attached to preimages of little  $\beta$ . Little Mandelbrot set and decorations attached to little  $\beta$ -Misiurewicz points. The annulus and its preimages are scaled as  $\rho^{-n}$ ,  $\rho^{-\frac{3}{2}n}$ ,  $\rho^{-\frac{7}{4}n}$ ,  $\rho^{-\frac{15}{8}n}$ , ... Main Renormalization with a large annulus

Dynamics of  $f_c(z)$  for  $c \approx c_n$ ,  $z \approx \omega_c$ :

1) mapped close to repelling periodic point by conformal  $f_c^k(z)$ 

2) mapped n times around the repelling periodic point

3) then close to 0, mapped back 2:1

Using the Koenigs conjugation  $\phi_c$  and the multiplier  $\rho_c$ , this gives

$$f_{c}^{np+k+1}(z) = K_{1}\rho_{a}^{2n}(z-\omega_{c})^{2} + c + \mathcal{O}(\rho_{a}^{-\frac{t}{4}n})$$
  
for  $z-\omega_{c} = \mathcal{O}(\rho_{a}^{-\frac{19}{12}n})$ ,  $c-c_{n} = \mathcal{O}(\rho_{a}^{-\frac{7}{4}n})$  [E-E, D-H, McM].

The affine rescaling  $\tilde{z} = K_1 \rho_a^{2n} (z - \omega_c)$  and  $\tilde{c} = K_2 \rho_a^{2n} (c - c_n)$  gives  $\tilde{z}^2 + \tilde{c} + \mathcal{O}(\rho_a^{n/4})$  for  $\tilde{z} = \mathcal{O}(\rho_a^{\frac{5}{12}n})$ ,  $\tilde{c} = \mathcal{O}(\rho_a^{n/4})$ .

**Lemma 1**: The Straightening Thm. gives a quasi-conformal conjugation to  $\hat{z}^2 + \hat{c}$ . By explicit construction we have  $\hat{z} - \tilde{z} = \mathcal{O}(\rho_a^{-n/6})$  and  $\hat{c} - \tilde{c} = \mathcal{O}(\rho_a^{-n/6})$ .

Main

Asymptotic models: The Koenigs conjugation  $\phi_c$  at the repelling periodic point is maping  $\mathcal{K}_c$  to the asymptotic model  $X_c$ , which is linearly self-similar with the scaling factor  $\rho_c$ . Now  $\mathcal{M}$  is asymptotically self-similar at a [Tan Lei]:  $\rho_a^n(\mathcal{M}-a) \to K_0 X_a$  in Hausdorff-Chabauty metric. By the same techniques:

$$\rho_a^n(\mathcal{M} - c_n) \to K_0(X_a - \phi_a(0))$$
  

$$\rho_a^{\frac{3}{2}n}(\mathcal{M} - c_n) \to K_1(X_a - \phi_a(0))^{1/2}$$
  

$$\rho_a^{\frac{7}{4}n}(\mathcal{M} - c_n) \to K_2(X_a - \phi_a(0))^{1/4}$$

There are analogous asymptotics for the Julia set. In both planes, there are m decorations of length  $\sim \rho_a^{-n}$ , 2m of length  $\sim \rho_a^{-\frac{3}{2}n}$ , 4m of length  $\sim \rho_a^{-\frac{7}{4}n} \dots$ 

**Lemma 2**: Two asymptotic models are combined in the fundamental annulus  $R'|\rho_a|^{-\frac{19}{12}n} \leq |z - \omega_c| \leq R|\rho_a|^{-\frac{7}{6}n}$ . For  $c = c_n + \mathcal{O}(\rho_a^{-\frac{7}{4}n})$ , this part of  $\mathcal{K}_c$  is contained in a relative  $\varepsilon$ -neighborhood of  $\mathcal{K}_{c_n}$ , with  $\varepsilon \to 0$  as  $n \to \infty$ .

The relative distance estimate is transferred to  $\tilde{z}$  and  $\hat{z}$ , and pulled back using the Boettcher conjugation  $\Phi_{\hat{c}}$ . Control of dynamic decorations gives control of parameter decorations. Proves Theorem 0.

#### Hairiness

Smallest possible scale:  $c - c_n$  and  $z - c_n$  are  $\mathcal{O}(\rho_a^{-2n})$ ,  $\tilde{c}$  and  $\tilde{z}$  are  $\mathcal{O}(1)$ . Then the (absolute) Hausdorff distance of dynamic decorations and parameter decorations  $\rightarrow 0$  as  $n \rightarrow \infty$ . For extremely large n, they will look as follows:

1) All decorations of the little  $\hat{\mathcal{M}}$  or  $\hat{\mathcal{K}}_{\hat{c}}$  are converging to binary rays, if  $a \in \mathbb{R}$ .

2) At least for a = -2, the area of the decorations  $\rightarrow 0$ .

Probably true for all Misiurewicz points  $a \in \mathcal{M}$ , when rays are replaced with  $\Phi^{-1}(\rho_a^{\mathbb{R}})$  for a suitable branch of  $\log \rho_a$ .

Main





Main, Example 1, 2, 3, 4, 5, 6, 7.





Main, Example 1, 2, 3, 4, 5, 6, 7.





Main, Example 1, 2, 3, 4, 5, 6, 7.









Close to a root: the relative error seems to be small but does not go to 0.



From the family of cubic polynomials with a persistent Siegel disk.





From the cubic Newton family.





From the family  $f_c(z) = c \sin z$ .

Appendix: Comparison of  $\mathcal{M}$  and different  $\mathcal{K}_c$ 





Main