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Abstract

Let f be a rational function, which has k£ n-cycles under iteration. By using
the symmetry of the underlying equation of degree k- n, it is reduced to equa-
tions of degree k and n. This is explained in terms of Galois theory.

The 3- and 4-cycles of f.(z) = 22 + ¢ are obtained explicitly. This yields the
corresponding multiplier, which maps hyperbolic components of the Mandel-
brot set conformally onto the unit disk.

1 Introduction

For a rational function f : C — C, denote the n-th iterate by f™. z is in the
Julia set of f, if the sequence (f"(z)) is not normal in any neighborhood of z,. We
consider the family of quadratic polynomials f.(z) = 22 + ¢. The Mandelbrot set
M contains those parameters ¢ € C, such that the Julia set of f. is connected, and
for ¢ ¢ M, the corresponding Julia set is a Cantor set. Since 0 is the only critical
point of the polynomial f., ¢ € M iff the orbit (f(0)) is bounded [4, p. 124]. This
is used to obtain computer images of M.

A n-cycle of f. consists of distinct points 2 ...z, with fo(z1) = 29, ...,

fe(2,) = z1. The corresponding multiplier is A = f'(21) = 2"21 - 29 - - - z,. The cycle
is attracting, if [A\| < 1. The set of those ¢, such that f, has an attracting n-cycle, is
a union of components of the interior of M, which are called hyperbolic. These are
mapped conformally onto the unit disk by A. It is well known that A is an algebraic
function, with (A/2)> = X/2+c=0forn =1 and A = 4(c+ 1) for n = 2 [12, p.
161].
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We describe an algorithm to obtain these functions for every n, and give the results
for period 3 and 4. Define the polynomials g,(z, ¢) recursively by

f2(2) = 2 = Tlaatz. ) 0
dln
then the zeros of g, are the n-periodic points of f.. For n > 3, the degree of g, is
at least 6. In general, only polynomial equations of degree 4 or less can be solved
explicitly, but g, satisfies the symmetry relation g¢,(z, ¢) =0 = ¢,(f(2), ¢) =0,
which is used to reduce the equation. The resulting algorithm is best understood in
terms of Galois theory.

2 The cycles of f.

Except for some values of ¢, at which a bifurcation occurs, g, has k- n simple zeros.
These form k n-cycles 2 . .. 2% with fc(zl-(j)) = zl(]), [ =i+1 (mod n). This suggests
the following algorithm: Define s,(z, ¢, a) = 2+ fo(z) + ... + f*7'(2) — a. Then

Z-(J), ¢, a) = sn(zl(j), ¢, a), thus a can be chosen such that the greatest common

Sn(z
divisor of g, and s, is of degree n (namely a = o = z%j T zT(Lj )). We perform
Euklid’s algorithm with ¢, and s,. The remainder with degree < n must vanish.
This yields an equation h,(a, ¢) = 0, where h,, is the g.c.d. of the coefficients of this
remainder. Denote the remainder of degree n by j,(z, ¢, a). It is the g.c.d. of g,
and s,, if a satisfies h,(a, ¢) = 0. We have applied this algorithm to g3, g4 and g5

and give the results for n = 3, 4 in the following

Theorem 1

(Netto) Determine h,, and j, from the algorithm described above. The n-cycles of
fe are obtained by solving hy,(a, ¢) = 0 for a and then j,(z, ¢, a) =0 for z. This
can be done explicitly forn = 3, 4. We have

hs(a,c) = a®+a+c+2
ga(z,c,a) = 22 —a+(—a+c—1)z—(ac+c+1)
hy(a, ¢) = a®+ (4c+3)a+4

Ja(z, ¢, a) = <4a22 —2a*z —a® —a — 4)2 —a*(a® + 4)(22 —a— 1)2 :

All of these formulas can be translated to the logistic map z +— Ax (1 — x). These
formulas have been derived a hundred years ago by Netto in [11]. He started with
the problem of finding a polynomial with a cyclic Galois group, and arrived at the
iteration of rational functions. Brown [2] has given formulas for n = 5 and n = 6,
and these questions have also been addressed in [13], [14], [8]. The method of these
authors consists of eliminations with the coefficients of the polynomials, by using

Z (zi(j))z = Z (zi(i)l — c) =a? —nc , (2)

relations like



and thus it is shown that the coefficients of j, (w.r.t. z) are rational functions of ¢
and a.

Our method using Euklid’s algorithm proposed above seems to be simpler and is
easily performed by Maple (see the last page). For n > 5, however, the required
memory and time grow immensely.

An equation of degree 3 can be solved with Cardano’s formula, and an equation of
degree 4 is reduced to two quadratic equations, after solving the associated cubic
resolvent. We will see in Section 4 that the Galois group of j, is cyclic. This implies
that the discriminant of j3 is a square, namely (4a* + 6a + 9)?, and the resolvent of
Ja is reducible [10, p. 126], which has led us to the simplified form of j, given above.
Thus solving j4(z, ¢, a) = 0 is reduced to

4az2—2a22—a2—a—4::l:a\/a2—|—4(2z—a—1). (3)

3 Formulas for components of the Mandelbrot set

From j,, the multiplier A\ = 2"y with g = 21 - 25 - - - 2,, is obtained by using Vieta’s
theorem. This yields

Theorem 2

(Stephenson) For a hyperbolic component H of M corresponding to attracting n-
cycles of fe, the multiplier A : 'H — D1(0) is a suitable branch of k,(c, u) = 0, where
A = 2" and the polynomial k, is obtained by eliminating a from the equations

ho(a, ) =0  and  p=(—1)" L1118 COCHCICN (Jn)

leading coefficient (j,)
Forn =3 and n = 4 this yields

ks(e, ) = 42+ (1—p)e+ (1 —p)?
kale, p) = 437+ (u+3)ct+(p+3)c
+ 2-p—p) A+ (1—p)?.

k., has been given in [13] for n = 3, 4, 5, in [14] for n = 6 and in [15] for n = 7. In
the latter case, a numerical method is used. k,, has degree k£ with respect to p and
degree nk/2 w.r.t. ¢. For n =3 or 4, X is obtained explicitly from c¢. For n = 3, ¢ is
obtained from A, and the boundary of the 3 corresponding hyperbolic components
of M is determined by |c+ 2 4= c\/—4c — 7| = 1/4. In R?, this is a curve of order
12. These formulas can be used to draw more accurate computer images of the
Mandelbrot set, and to determine, e.g., the points of bifurcation from period 3 to
period m - 3, where \"" = 1.

In principle, £, can be obtained without employing the results of Theorem 1, by
eliminating 2 from z - f.(2)--- f"(2) — p = 0 and g,(z, ¢) = 0, but this does
not provide a simplification, since the degrees are increased and the computation
requires even more steps.



4 The Galois group of g,

The algorithm of Theorem 1 can be understood in terms of Galois theory as follows:
The two basic ideas of Galois theory are to consider the problem of determining
the roots of a polynomial as a problem of field extensions, and to translate this to
the investigation of a finite group. Denote the field Q(¢) by K and the splitting
field of g, € KJ[z] by L. The Galois group G consists of those automorphisms
of L, which are leaving K fixed. It is represented by permutations of the zeros
of g,. For a € G, we have f.(z-«a) = f.(z) - a. Since f. acts on the zeros as
the permutation oy = (z%l) . zg)) o (z%k) . z,(lk)), G must be contained in the
centralizer of g in the symmetric group Sy, which is a wreath-product Sy C,,. We
have S;1C,, = Sk x (C,, ® ... ® C},), where Sy is permuting the different cycles of
Jn, while each C), is acting on the elements of a unique cycle. Now the algorithm of
Section 2 corresponds to the normal series

Sp1C > (Crh®..0C,)>..bC,C,>C,>1.

The Galois group of h,, € K[z] is contained in Sy, and for h,(a, ¢) = 0 the Galois
group of j, € K(a)[z] is cyclic of order < n. Thus j, = 0 can always be solved
explicitly, but h, = 0 is in general not solvable for £ > 4. Up to now, we have
shown that G < Sy 1 C,. In the case of n = 3 or n = 4, the formulas of Theorem 1
show that G = Si1C,, in general, i.e. if ¢ is transcendental, or equivalently, if Q(c)
is understood as the field of rational functions in one variable.

Theorem 3
(Bousch) The Galois Group of g,(z, ¢) € ((C(c))[z] is isomorphic to Sk 1C,,.

In [1] the manifold given by ¢,(z, ¢) = 0 is considered as a covering of the parameter
plane (with the bifurcation points removed). Bousch shows that the fundamental
group of the punctured parameter plane acts on the fibers as Sy 2 C),, and this action
is isomorphic to the Galois group of g, [6]. A similar proof is given in [9], which
extends to 2% + c.

5 Summary and generalization

If f is a rational function with k n-cycles, the underlying equation of degree k - n
is reduced to one equation of degree k and k equations of degree n. The first is
solvable explicitly at least if £ < 4, while the latter equations are always solvable,
as Galois theory shows.

Usually, s,(z, a) = 2z + f(2) +... + f"71(2) — a will work, but if e.g. a(¥) = a® as
for f(z) = 2% —4/3 with n = 5, then s, must be replaced by some higher-degree
symmetric polynomial.

If f is not a polynomial, g, and s, must be understood as the numerators of certain
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rational functions. As an example, consider f(z) = z — which arises when

4



Newton’s method is applied to z3 — 1. f has 8 3-cycles. Two of these satisfy

f(2) = €232 or 1926 + 72% + 1 = 0, and the remaining six are obtained from

hs(a) = 256a°+1296a® 4+ 31941 = 0 and

g3z, a) = (7200 + 1521) 23 + (=720a* — 1521 a) 2% + (224 a° + 1170a?) 2

+ (=168a® +3042) = 0.
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Implementation in Maple

readlib(factors): with(numtheory, mobius): n := 4; # adjust n !!!
f[0] := z: for i from 1 to n do f[i] := evala(f[i-1]"2 + ¢) od:

g :=1: for 1 from 1 to n do

if irem(n, i) = O then g := gx(f[i] - z) mobius(n/i) fi od:

g :
if n <= 3 then Galois_g_z := galois(subs(c = 1, g)) fi;

sort(evala(g), [z, c], plex); kn := degree(g, z)/n:

q :=z - a: for i from 1 ton - 1do q :=q + f[i] od:
q := collect(q, z): p := g:
while degree(q, z) > n do

r0 := collect(evala(Prem(p, q, 2)), z): p := q:

for rf in factors(r0)[2] do if degree(rf[1], z) > O then q := rf[1] fi od:
od:

r0 := collect(evala(Prem(p, q, z)), 2z):

for rf in factors(r0) [2] do

if degree(rf[1], z) = O and degree(collect(rf[1], a), a)
then h := rf[1] fi od:

h := collect(h, a): 1lch := collect(lcoeff(h, a), c):

if degree(lch, c) = 0 then h := collect(evala(h/1lch), a) fi:
h :

kn

sort(h, [a, c], plex);

j := collect(evala(Prem(q, h, a)), z):

if lcoeff(j, z) = -1 then j := -j fi: j := sort(j, [z, a, c], plex);
u := muxlcoeff(j, z) - (-1) n*xtcoeff(j, z):

r0 := resultant(h, u, a):

for rf in factors(r0) [2] do

if degree(rf[1], mu) > O then k := rf[1] fi od:

k := collect(k, c):

if lcoeff(k, c) = -1 then k := collect(evala(-k), c) fi:
k := sort(k, [c, mu], plex);
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